Segwit in Bitcoin:
Lessons Learned

Gregory Sanders

Myself

e Elements Project

o Elements Alpha

o Liquid
e Did review for Segwit in Core

o Upstream review important for downstream
e Scaling(?)

o How do we scale protocol development?

https://elementsproject.org/
https://elementsproject.org/
https://github.com/ElementsProject/elements
https://github.com/ElementsProject/elements
https://blockstream.com/2015/10/12/introducing-liquid.html
https://blockstream.com/2015/10/12/introducing-liquid.html

Segwit as a Solution

e First developed as an “element” of Elements Alpha

e Solves the problem of unintentional malleability.
o TL;DR Allows safe chaining of pre-signed transactions for smart contracting in Bitcoin.
o Payment Channels, Lightning

e But doesn't fit into Bitcoin really.

o We can't just change txid formulation on a whim
o No matter the technical benefits, hard to imagine non-security-fix HF

https://github.com/ElementsProject/elements

Segwit as Deployed

e Key insight: If you can deploy a type of “extension block”. Inside this
extension nearly any rules can be enforced, turning hard forks into soft forks

e Many ideas like Confidential Transactions as Softfork

e Segwit, a highly desired extension, fits the bill

o Special new transaction types are signaled via empty scriptSig and commitment to the

witnessScript in scriptPubkey
o Think P2SH, but hiding the new data inside the extension block
o Now signatures are out of txid calculation for both new and old nodes.
o Backwards compatible

e Old news now

https://bitcoincore.org/en/2016/06/24/segwit-next-steps/
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/

Isn’t Segwit already done?

e Segwitis active in testnet, and close to release in mainnet
e One of the largest changes to Bitcoin ever
o Touched nearly every part of the codebase: serialization, p2p, wallet, consensus

e Talking about this has two purposes:
o Informational for those not privy to the sausage-making
o What | see as takeaways from the exercise

e Any opinions are just mine

Minimum Viable Product (What didn’'t make it)

e New address format(BIP142)

o Hesitancy to perpetuate base58+checksum
o Nested P2SH for now

e Additional tweaks to commitment structure

o Arbitrary segwit commitment tree and fast hashing
o Previous block withess commitment

e Validation Cost Metric
e Fraud Proofs
e New scripting*

* for the most part

https://github.com/bitcoin/bips/blob/master/bip-0142.mediawiki
https://github.com/sipa/bitcoin/pull/75
https://github.com/sipa/bitcoin/pull/75
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/012103.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/012103.html
https://scalingbitcoin.org/hongkong2015/presentations/DAY2/3_tweaking_the_chain_3_nick.pdf
https://scalingbitcoin.org/hongkong2015/presentations/DAY2/3_tweaking_the_chain_3_nick.pdf

Minimum Viable Product

e Each proposal needs a champion
e Each proposal increases demand for review
o Already strapped for review as-is

e Even “too many BIP numbers” can be a problem

o Downstream developers can’t figure out why signatures are failing (BIP143)
o People still expecting BIP142 addresses

Sidenote: Scripting differences / similarities

e CHECKMULTISIG still requires an additional dummy argument in the stack
o Null dummy softfork: #8636

e Sighash serialization overhaul (BIP143)

o O(n) hashing

o Value under hash!
“Minimal if” as policy: #8526
No uncompressed pubkeys as policy #8499 (?)
Nullfail as policy #8634
Fixes SIGHASH_SINGLE “one” bug
Low s softfork

Script versioning

https://github.com/bitcoin/bitcoin/pull/8636
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
https://github.com/bitcoin/bitcoin/pull/8526
https://github.com/bitcoin/bitcoin/pull/8499
https://github.com/bitcoin/bitcoin/pull/8634
https://github.com/bitcoin/bitcoin/blob/master/src/script/interpreter.cpp#L1216
https://github.com/bitcoin/bitcoin/pull/8533#issuecomment-243973512
https://github.com/bitcoin/bitcoin/pull/8533#issuecomment-243973512

Segwit Developed

e #segwit-dev (still ~52 users there, for some reason)

e Contention about where it should be discussed
o Mailing list used to announce BIPs, major changes
o Hesitancy to flood #bitcoin(-core)-dev
o Further partitioning of IRC development presence

e Bulk of design done pre-PR

e 4 segnet iterations, starting with segnet1 in Dec. 2015

o Were actively used by downstream developers
o Spam 4MB blocks

Segwit PR'd

32 participants

April 9th to June 24th

The branch where comments were targeted
~1,486 lines of code for implementation
~3,338 lines of code for tests

Segregated witness #7910

(WYX= ECL N sipa wants to merge 128 commits into bitcoin:master fTOM sipa:segwit-master

EQ Conversation 145 O Commits 128 Files changed 80 +5,305 -571 EEER

Segwit Rebased

e |dentical diff
e June 6 to June 26
e (.13, Compact Blocks, and Segwit

o Contention on when each should be merged
o 0.12 backport promises?

e Merged, activated on testnet

d

Segregated witness rebased #5149

[WREGEG N laanwj merged 27 commits into bitcoin:master from sipa:segwit-masterz on Jun 24

i&d Conversation 24 =0~ Commits 27 Files changed 80 +5,305 -571 REEE

Segwit merged to master. D

[bitcoin / bitcoin @ Watch~ 1214 Unstar 10,023 ¥ Fork

Code @ Issues 391 Pull requests 131 1| Projects 6 - Pulse Graphs

0.13.1

No due date 91% complete

(D 50pen + 53 Closed

= [1 [ga] mininode: Fix order of positional args in wait_until . [NEsdsbackport Tests
#8857 opened 12 hours ago by MarcoFalke

1 Add NULLDUMMY verify flag in bitcoinconsensus.h .~ [T [Nesdsbackpon
#8843 opened a day ago by [l2012

I update bitcoin-tx to output witness data .~ [NSSaSBackport

#8817 opened 5 days ago by jnewbery

" Support for compact blocks together with segwit . [iEgasibaskpors 1)
#8393 opened on Jul 22 by sipa

7 Add several policy limits for segwit scripts « [igedsibackpor
#8490 opened on Aug 11 by ji2012

6,661

Da

12

one!

(@ 50pen « 53 Closed

n

=

=

=

=

=

[ga] Fix race lition in p2p: blocks test . [NeSdsbackpor Tests

#8854 by sdaftuar was merged 13 hours ago

bitcoin-util-test.py should fail if the output file is empty ./ [NEgasBackparY| Tests
#8836 by jnewbery was merged a day ago

test: Avoid ConnectionResetErrors during RPC tests . [liédsibackport] Tests

#8839 by laanwj was merged a day ago

[ga] fix nulldummy test . [NESaSBAGKPOIL Tests

#8841 by 12012 was merged a day ago

[qa] blockstore: Switch to dumb dbm . [NESSaEkpoH] Tests

#8834 by MarcoFalke was merged 2 days ago

[ga] nulldummy.py: Don't run unused code . [NESSBAEKEOH) Tests
#8835 by MarcoFalke was merged 2 days ago

[ga] Split up slow RPC calls to avoid pruning test timeouts [HESdSBAEKPOH] Refactoring Tests
#8827 by sdaftuar was merged 2 days ago

Add bitcoin-tx JSON tests [leedsiBackport] Tests
#8829 by jnewbery was merged 8 days ago

[rpc] throw JSONRPCETor when utxo set can not be read . [iggdsiagkpor

#8832 by MarcoFalke was merged 3 days ago

Add policy: null signature for failed CHECK(MULTI)SIG x [NesdsBackport) EEE L loaed
#3634 by J12012 was merged 4 days ago

Make non-minimal OP_IFINOTIF argument non-standard for P2WSH .~ [ligasagkpory
#8526 by 12012 was merged 4 days ago

Backports for 0.13.1 » Backport
#8815 by laanwj was merged 4 days ago

Ping regularly in p2p-segwit.py to keep connection alive .~ [NgsdsBackport Tests
#8803 by 12012 was merged 4 days ago

0.13.0 is no longer compatible with OSX 10.7
#8577 by jonasschnelli was closed 5 days ago

Imnlamant NLII | DUIMMY snftfork (RIP147)

Backport Backlog

e Fix Segwit transaction blinding via reject filter
o Spammers could temporarily stop a transaction from propagating

e Compact blocks for Segwit
o Plus versioning negotiation

e Segwit wallet cleanups
e Softfork/policy follow-ons

e Slew of bugfixing backports
o https://github.com/bitcoin/bitcoin/milestone/22

e \Weeks of somewhat tedious irc dev meetings
e Getting close!

https://github.com/bitcoin/bitcoin/milestone/22
https://github.com/bitcoin/bitcoin/milestone/22

Proposal(s)

Any non-trivial consensus change to Bitcoin in the future should have an

actively-used testnet spun up.
o If supposed downstream users aren’t actively testing, is the change even desired?
o Regular (ab)use helps to surface issues early

Ride-along changes should be discussed, implemented, and tested as early

as possible into the development cycle.
o Other issues will surely pop up

Tests should take up a large fraction of the loc changes
Any additional technical channels should be carefully spun up, logged, and

spun down at appropriate times
o Avoid loss of design history, communal knowledge

Proposal(s)

If a PR spans a number of layers:
o Keep commits in logical partitions

o Split sections with empty commits marking start/end

--- [SEGWIT] begin: P2PInodelconsensus ---
sipa committed on Mar 31

BIP143: Verification logic
sipa committed on Dec 27, 2015

BIP141: Other consensus critical limits, and BIP145
sipa committed on Jan 3

[RPC] Return witness data in blockchain RPCs
H jl2012 committed with sipa on Jan 22

[libconsensus] Script verification APl with amounts
n afk1l committed with sipa on Jan 24

sipa committed on Mar 13

--- [SEGWIT] begin: wallet ---
sipa committed on Mar 31

Refactor script validation to observe amounts
sipa committed on Mar 31

Add rewind logic to deal with post-fork software updates

ecacfdd

3dd4162

2bif6f9

TcdbT77

b7dbeb2

6832769

9757b57

feTidd3

<«

<«

<«

<O

<o

<

<

o

Proposal(s)

e Stop talking about block size
o Let’s talk about “weight” and “throughput”

e Only spend time backporting major consensus changes when there is

demand

e Don’t do large changes like this often

Higher amount of risk compared to usual

Slows other technical debt cleanup (libconsensus, network refactor, etc)
Is more uninviting for review

Collides into regular release schedule, causes confusion/tension

o O O O

Thanks!

Softforks with increased risks

e Segwit nodes must find sufficient number of upgraded nodes
o You may be partitioned off the network if you can'’t find peers to serve new data
o Same with any “extension block” style softfork
o P2SH et al. suffer no such risks
e Mitigations:
o Preferential connections used to mitigate
o Find more compatible peers faster
m “feeler’ connections

e Need a long lead-time to ensure safety
e Punish bad peer behavior without redoing all networking code

https://github.com/bitcoin/bitcoin/pull/8282
https://github.com/bitcoin/bitcoin/pull/8282

